
Null and Outlier Detection in Large Datasets
DSGA 1004 Project Final Report

Zhe Huang
New York University
zh1087@nyu.edu

Daoyang Shan
New York University
ds5471@nyu.edu

Yueqiu Sun
New York University
ys3202@nyu.edu

1 INTRODUCTION
In data analytics, it’s a common practice to identify data points
that we consider as interference to our analysis, such as instances
containing null value or obvious outliers. Such instances are likely
caused by erroneous measurement and thus should be removed
from the data set to avoid statistical problems in the following
analysis. Finding null points could be a trivial task, but we do need
to think about some challenges for outliers. For example, how do
we define an outlier without knowing the underlying distribution
of data points? How to find an efficient algorithm that can be
applied to huge data set? In our project we mainly focus on efficient
unsupervised algorithms to investigate outliers with the help of
big-data tools.

2 PREVIOUS WORKS
Extensive works on the exploration of outliers have been done by
researchers. Chandola, Banerjee and Kumar discussed multiple out-
lier detection algorithms and their applications in their paper [1].
Despite the difference between different algorithm, we can divide
those algorithms into two categories: algorithm for numerical data
and algorithm for categorical data, due to the innate difference be-
tween these two types of data, especially the ’definition of outliers’.
In our work, we’ll also divide our problem into two sections and
work on both of them with distinct strategies.

2.1 Numerical Data
In a data set with majority of attributes being numerical, outliers
are generally defined as data points ’far away’ from majority, and
distance metrics like Euclidean distance are normally used here.
One simple yet effective algorithm used here is k-means clustering.
Although not designed for outlier detection, clustering can be ad-
justed for such task [4]. A common procedure includes generating
clusters, selecting a distance threshold, and identify all points that
exceed such threshold from their corresponding centroids as out-
liers. Clustering algorithm doesn’t assume any statistical assump-
tion on data set, and can be (in most of the cases) easily explained
and visualized. However, it has multiple drawbacks, including low
efficiency (clustering is generally NP Hard) and cluster instability
caused by outliers [2].

2.2 Categorical Data
Distance based definition of outliers fails for categorical data be-
cause it makes no sense to calculate ’distance’ two categories. In-
stead, frequency based definition is used, by which outliers are
defined as points that represent a rare combination of categories.
AVF (Attribute Value Frequency) algorithm, which mainly calculate
a score that represents the ’rarity’ for each data point and identify

those points with high rarity as outliers, is one of the algorithms de-
signed for categorical data [3]. AVF score for data point i is defined
as:

m∑
j=1

frequency of jth attribute value of xi in column j

We see that lower AVF score implies higher rarity. Again, AVF
assumes no statistical distribution on data set, and are easy to be
implemented.

2.3 Hybrid Data
The amount of works on data sets with both categorical and nu-
merical data is surprisingly small. A proposed algorithm by some
authors first splits data set into chunks based on its distribution of
categorical data combinations, and applies algorithms for numerical
data for each chunk. However, such algorithm obviously suffers
from the potential huge amount of possible combination and the
difficulty of comparison between combinations. In our project we
don’t explore further into this algorithm.

3 PROBLEM FORMULATION
In our project we have 50 data sets from which we need to identify
null points and outliers (if possible) and all of them are extracted
from totally different realms, which makes us hard to manually
inspect each of them and design individual strategies. Therefore we
propose to process all of them with a highly generalized automated
procedure with almost no examination and extraction of domain
knowledge. In another word, we aim to identify null points and
outlier from any given data set without even looking into it for
domain knowledge. Such action will indeed harm the accuracy
for a specific data set, but guarantee the overall efficiency and
performance.

4 METHODOLOGY
Our project implementation can be summarized as following: first
we pass all data set to a cleaner script, remove those elements that
we can’t handle (usually because we don’t have the required domain
knowledge for that) and identify if this data set is generally numer-
ical, generally categorical or hybrid. We pass all data sets that we
believe to be generally numerical to clustering algorithm(algorithm
for numerical data) and pass the rest (after some preprocessing) to
AVF algorithm(algorithm for categorical data).

4.1 Data Cleaning
The first step is to automate the process of data cleaning. First we
identify those columns with a large percentage of null or empty
values (in the final version, 50%) and drop those columns. Indeed
in real world those columns may contain important information

and even they’re strong indicators of outlier, however in the highly
generalized scenario those columns only introduce uncertainty,
making the following steps hard to process. For example, if we
keep a column with a large portion of blanks without knowing
anything about the domain knowledge, should we identify those
blanks as null points or set some default value for them in the
outlier detection algorithm?

Second, we classify all columns into three types: numerical, cate-
gorical and other. Numerical column indicates that distance metric
is meaningful on this column, categorical column contains small
enough number of unique values (in our implementation, number
of unique values is less than 10% of the number of total values),
while other means this column can’t be classified as either numeri-
cal or categorical. Typical ’other column’ includes address, email
or timestamp. Since we can’t assume any domain knowledge, we
have to drop all ’other columns’. For the rest of two types, if more
than 75% are numerical, we drop all categorical columns and apply
clustering on it in the following step. Otherwise, we apply binning
on all numerical columns to make our data set ready for AVF al-
gorithm. We use QuantileDiscretizer from ml.feature package in
PySpark for binning with default number of bins as 10. Indeed we
ignore this data set if no column is left.

4.2 Clustering
We use PySpark to implement k-Means Clustering algorithm. First
we identify all these rows with null or empty value within as null
points. After we filter all those points (rows), we specify the range
of k on which we search for the optimal k (in our implementation,
2 to 10). For each candidate k , we apply clustering algorithm on
it and get the corresponding WSSSE score (Within Set Sum of
Squared Error) and find the optimal k , which brings the largest
second derivative of WSSSE curve at that k . Note that like other
applications of clustering, we must normalize all columns to avoid
the effect of different scales.

After we fix the k we want to use, we assign each point to a cluster
and calculate its distance from the centroid. With a specified outlier
threshold, we find those points with largest distance from centroid
as outliers. We also use PCA based visualization method to validate
the correctness, which we’ll discuss in section 5.

4.3 AVF
Our first implementation of AVF is completed with Spark, which
directly uses the pseudocode from Koufakou’s paper as shown in
Figure 1. Similar to clustering algorithm we identify those rows
with blank or null values as null points and remove them from out
data set. Then we calculated AVF score for each remaining points
(rows) as described in section 2, sort them by AVF score and select
those with least AVF scores as outliers.

4.4 MR-AVF
One serious concern of our Spark implementation of AVF is that
we seem to only ’accelerate a sequential algorithm with the help of
parallelized tool’, instead of improving the implementation from
algorithmic and design level. MR-AVF, the MapReduce version of
AVF, is covered by some previous researchers [3]. As Figure 2 shows,

Figure 1: AVF Algorithm Pseudocode

Figure 2: MR-AVF

MR-AVF consists of two MapReduce phases. However, the direct
implementation from pseudocode is actually hard, since passing
data structures like HashMap between mapper and reducer is not
an easy process. Instead, we develop our own implementation that’s
slightly different from original pseudocode, which we’ll illustrate
below.

Let’s use a simple data set for better illustration (see Table 1). Note
that index is not part of the initial data set. We use unique index to
mark individual data points. The whole process consists of three
sequential MapReduce instead of two as shown in the pseudocode.
We use ∥ to separate key and value.

• Mapper 1: For each line we read in, take the value in each
entry and the column number they reside in as key. We take

2

index col1 col2

1 dog A
2 dog B
3 cat B
4 dog A

Table 1: Sample Data Set

column number because a value may appear in different
columns. We set the index number of this row as value.

Mapper 1 output: (dog, 1) ∥ 1, (A, 2) ∥ 1, (dog, 1) ∥ 2, (B, 2) ∥
2, (cat, 1) ∥ 3......

• Reducer 1: For each key-value pair with the same key, main-
tain key, and change value to an array of all indices that
have this value at this column, as well as the amount of such
indices.

Reducer 1 output: (dog, 1) ∥ [3, (1, 2, 4)], (cat, 1) ∥ [1, (3)], (A,
2) ∥ [2, (1, 4)], (B, 2) ∥ [2, (2, 3)]

• Mapper 2: For each key-value pair, generate new key-value
pairs such that all indices in the value serve as key, while
column number and the count in value as new value. Note
that here we use count to replace actual categorical values
(like 3 replaces dog).

Mapper 2 output: 1 ∥ (1, 3), 2 ∥ [1, 3], 4 ∥ [1, 3], 3 ∥ [1, 1]......
• Reducer 2: Recall that index is unique, so for each index (as
key), we subtract all counts from values, store them into a
new array, and use that array as new value. We abandon
column number here.

Reducer 2 output: 1 ∥ [3, 2], 2 ∥ [3, 2], 3 ∥ [1, 2], 4 ∥ [3, 2]
• Mapper 3 and Reducer 3 are trivial, in which we simply sum
all counts in value up as the AVF score for this index (point),
and sort them in Reducer by switching key and value. In
actual code we use Spark to execute this process for conve-
nience concern.

We expect this implementation to be efficient and available for scal-
ing up because of two main reasons: 1, it takes only O(1) memory,
which avoids potential risks like OOM Exception in Spark; 2, we
can utilize an arbitrary number of workers in this task, which is
important for scalability.

5 RESULT AND DISCUSSION
5.1 Cleaner
Our cleaner determines that 37 out of 50 data sets are suitable
for the following outlier detection. Data sets that are dropped by
cleaner include: data set that contains almost only timestamps;
data set that contains only ’messy data’, for example address, email
etc; data set that contains too many blank entries in every single
column. Indeed we should be able to clean those data sets either
manually or given more domain knowledge, but those methods are
unavailable/undesirable in our project. Among the 37 data sets that
we pass to outlier detection, 8 are identified as mainly numerical

and passed to clustering, while the rest, either mainly categorical
or hybrid, are passed to AVF.

5.2 Clustering and Visualization
Our clustering algorithm processes those 8 numerical datasets. All
rows containing null or blank are identified as null, and we select
the top 5% points sorted by the distance to centroid in descending
order. Here we use ny8v-zzzb.tsv as sample for illustration. Optimal
k for this data set is 3, no points are identified as null points in this
data set, and 21 points with highest distance to their corresponding
centroids are classified as outliers.

Figure 3: WSSSE curve for different k

Figure 4: Visualization of clustering

In the visualization above, we clearly see the ’sudden drop of
WSSSE’ at k=3. If we visualize the clustering results with PCA,
we see that outliers (marked with red) seem to be reasonable in this
’triple cluster’ data set (three clusters are marked with blue, green
and yellow).

3

5.3 AVF and MR-AVF
Our AVF algorithm processes the other 29 categorical and hybrid
data sets. Again, we identified rows with null or blank as null, and
select 5% with lowest AVF score as outliers.

Compared to the visualization of AVF, the more interesting topic
is the comparison of Spark AVF and MR-AVF. We test on three
data sets with different sizes. Both Spark AVF and MR-AVF produce
exactly the same result. Then, we record the wall time of both
methods because Hadoop and Spark have different ways of time
recording. The result is shown in Table 2:

Table 2: Time Comparison Between Spark AVF andMR-AVF

Name Size MR-AVF Spark AVF
pvqr-7yc4 6.4*1e8 356 1400
tm6d-hbzd 2.6*1e8 123 200
r4s5-tb2g 360725 55 20

According to this result, MR-AVF seems to have better scalability
on large data sets, while Spark AVF does better on small data sets.
Indeed, this result may influenced by different I/O mechanisms,
different system processing costs or even our method of implemen-
tation. Also, Spark AVF surpasses MR-AVF a lot on convenience. For
example, MR-AVF need extra steps for null point detection, while
the same task can be easily integrated in Spark AVF.

5.4 Discussion and Potential Improvements
In practice, we expect the more frequent use of AVF algorithm
compared to clustering because we should assume that most data
sets in real world are not purely, or dominantly, numerical, and
AVF algorithm provides a relatively reasonable outlier detection
mechanism for hybrid data sets. Also, although we can’t fully assert
the inefficiency of Spark AVF on large data sets due to the potential
inaccuracy in time comparison, MR-AVF does seem to scale up
better for large data sets. However, Spark AVF outperforms MR-
AVF on small data sets, and the convenience of Spark compared to
Hadoop should also be taken into consideration. Spark AVF is still
a good choice given the volume of data is not too enormous.

Obviously, there are still plenty of spaces for potential improve-
ments. First, we can develop more complicated cleaner that can
extract more information and therefore identify less column as ’in-
tractable’ (and drop them). For example, an ideal cleaner should be
able to parse time stamps (in different types), number-like entries
(percent or scientific notation), list-like objects (like "[apple, pear,
orange]") or others. Even if we can’t guarantee the extraction of
all information, an ’almost omnipotent’ cleaner can definitely en-
hance the accuracy of outlier detection and avoid the loss of crucial
information. Second, we may apply more ’smarter’ mechanisms for
setting outlier thresholds. Currently user should manually input the
threshold (5% points are outliers) but in real world it’s very likely
that user has no idea what threshold he/she should input. Finally,
we should explore more efficient outlier detection algorithms, espe-
cially for hybrid data, since the algorithms we’re applying currently
may not be optimal. For example, clustering, although useful, is not
designed for outlier detection at first, and the time complexity is

generally NP-Hard. To conclude, our project sets a good starting
point for automated and generalized outlier detection, yet we ac-
cept the drawbacks in our design and look forward to the future
improvement.

6 RECAP AND MISCELLANY
In our project, we design and implement an automated data clean-
ing and outlier detection process. Our cleaner cleans data without
assuming domain knowledge and identifies data that suitable for
automatic outlier detection. Mainly numerical data sets are sent to
k-means clustering while the rest are sent to AVF. Our clustering
algorithm identifies null points and finds the optimal k, which is
then used for outlier detection. We implement two versions of AVF,
one in Spark and anther one, with our original way of implemen-
tation, in MapReduce. Both implementation bring the same result
and we also compare the performance with respect to time for both
versions.

See code, command line instruction and other notes at
https://github.com/szyyn95/DSGA1004

REFERENCES
[1] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly Detection:

A Survey. ACM Comput. Surv. 41 (7 2009). http://doi.acm.org/10.1145/1541880.
1541882

[2] Sanjay Chawla and Aristides Gionis. 2013. <italic>k</italic>-meansâĂŞ: A unified
approach to clustering and outlier detection. SIAMPub, 600 Market Street, 6th
Floor, Philadelphia, PA, 189–197. https://doi.org/10.1137/1.9781611972832.21
arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611972832.21

[3] A. Koufakou, J. Secretan, J. Reeder, K. Cardona, and M. Georgiopoulos. 2008.
Fast parallel outlier detection for categorical datasets using MapReduce. In 2008
IEEE International Joint Conference on Neural Networks (IEEE World Congress on
Computational Intelligence). IEEE Computer Society, Washington, DC, USA, 3298–
3304. https://doi.org/10.1109/IJCNN.2008.4634266

[4] R Smith, A Bivens, M Embrechts, C Palagiri, and Boleslaw Szymanski. 2002. Clus-
tering approaches for anomaly based intrusion detection. Proceedings of Intelligent
Engineering Systems Through Artificial Neural Networks 12 (01 2002), 579–584.

4

http://doi.acm.org/10.1145/1541880.1541882
http://doi.acm.org/10.1145/1541880.1541882
https://doi.org/10.1137/1.9781611972832.21
http://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611972832.21
https://doi.org/10.1109/IJCNN.2008.4634266

	1 Introduction
	2 Previous Works
	2.1 Numerical Data
	2.2 Categorical Data
	2.3 Hybrid Data

	3 Problem Formulation
	4 Methodology
	4.1 Data Cleaning
	4.2 Clustering
	4.3 AVF
	4.4 MR-AVF

	5 Result and Discussion
	5.1 Cleaner
	5.2 Clustering and Visualization
	5.3 AVF and MR-AVF
	5.4 Discussion and Potential Improvements

	6 Recap and Miscellany
	References

